來源:模具網
時間:2015-07-29 00:00:00
1.高速化
隨著汽車、國防、航空、航天等工業的高速發展以及鋁合金等新材料的應用,對數控機床加工的高速化要求越來越高。
a.主軸轉速:機床采用電主軸(內裝式主軸電機),主軸最高轉速達200000r/min;
b.進給率:在分辨率為0.01µm時,最大進給率達到240m/min且可獲得複雜型的精確加工;
c.運算速度:微處理器的迅速發展為數控係統向高速、高精度方向發展提供了保障,開發出CPU已發展到32位以及64位的數控係統,頻率提高到幾百兆赫、上千兆赫。由於運算速度的極大提高,使得當分辨率為0.1µm、0.01µm時仍能獲得高達24~240m/min的進給速度;
d.換刀速度:目前國外先進加工中心的刀具交換時間普遍已在1s左右,高的已達0.5s。德國Chiron公司將刀庫設計成籃子樣式,以主軸為軸心,刀具在圓周布置,其刀到刀的換刀時間僅0.9s。
2.高精度化
數控機床精度的要求現在已經不局限於靜態的幾何精度,機床的運動精度、熱變形以及對振動的監測和補償越來越獲得重視。
a.提高CNC係統控製精度:采用高速插補技術,以微小程序段實現連續進給,使CNC控製單位精細化,並采用高分辨率位置檢測裝置,提高位置檢測精度(日本已開發裝有106脈衝/轉的內藏位置檢測器的交流伺服電機,其位置檢測精度可達到0.01µm/脈衝),位置伺服係統采用前饋控製與 非線性控製等方法;
b.采用誤差補償技術:采用反向間隙補償、絲杆螺距誤差補償和刀具誤差補償等技術,對設備的熱變形誤差和空間誤差進行綜合補償。研究結果表明,綜合誤差補償技術的應用可將加工誤差減少60%~80%;
c.采用網格解碼器檢查和提高加工中心的運動軌跡精度: 通過仿真預測機床的加工精度,以保證機床的定位精度和重複定位精度,使其性能長期穩定,能夠在不同運行條件下完成多種加工任務,並保證零件的加工質量。